Exercise set 1: Basic properties of Brownian motion

Session 1: 2.3, 2.6, 2.7, 2.10, 2.14, 2.18, 2.19

Session 2:

Simple facts needed to solve these exercises:

- If $t \geq s$, then B_s and $B_t B_s$ are independent.
- $E[B_t^2] = t$ for all t.
- B_t is an N(0,t) random variable.
- If X is $N(0, \sigma^2)$, then

$$E[f(X)] = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} f(x) e^{-\frac{x^2}{2\sigma^2}} dx$$

Problem 1

Let $t \geq s$. Compute

$$E[B_s^2B_t - B_s^3].$$

Problem 2

Let $t \geq s$. Compute

$$E[B_tB_s].$$

Hint: $B_t = B_t - B_s + B_s$.

Problem 3

Use $E[B_r^2] = r$ for all r, to prove that

$$E[(B_t - B_s)^2] = t - s.$$

Problem 4

Prove that

$$E[B_r^4] = 3r^2$$

Hint: Use integration by parts to prove that $E[B_r^4] = 3r E[B_r^2]$.

Problem 5

Let $t \geq s$. Compute

$$E[B_s^4 B_t^2 - 2B_t B_s^5 + B_s^6].$$

Problem 6

Let $0 \le t_1 \le t_2 \le \cdots \le t_N$. Prove that

$$E\left[\left(\sum_{i=1}^{N} (B_{t_i+1} - B_{t_i})^2\right)^2\right] = \sum_{i=1}^{N} 2(\Delta t_i)^2 + t_N^2$$